M2.(a) M1 550 × $\frac{100}{95}$ = 579 g would be 100% mass Allow alternative methods. There are 4 process marks:

M2 So $\frac{579}{65} = 8.91 \text{ moles NaN}_3$ or M1 $\frac{550}{65} = 8.46 \text{ moles NaN}_3 \text{ (this is 95%)}$ M2 So 100% would be $8.46 \times \frac{100}{95} = 8.91 \text{ moles NaN}_3$ 1: mass $\div 65$ 2: mass or moles $\times 100 / 95 \text{ or } \times 1.05$ 3: moles NaN}_3 $\times 2$ 4: moles NaNH_2 $\times 39$

Then M3 Moles NaNH₂ = 8.91 \times 2 = (17.8(2) moles)

mass NaNH₂ = 17.8(2) × 39

1

1

1

1

M5 <u>693</u> or <u>694</u> or <u>695</u> (g) If 693, 694 or 695 seen to 3 sig figs award 5 marks

(b) M1 308 K and 150 000 Pa

M4

1

M2 n =
$$\frac{PV}{RT}$$
 or $\frac{150\ 000 \times 7.5 \times 10^{-2}}{8.31 \times 308}$

$$M3 = 4.4(0) \text{ or } 4.395 \text{ moles } N_2$$

Allow only this answer but allow to more than 3 sig figs

M4 Moles NaN₃ = 4.395
$$\frac{\times}{3}^{\frac{2}{3}}$$
 (= 2.93)
M4 is for M3 $\times \frac{2}{3}$

M5 Mass NaN₃ =
$$(2.93) \times 65$$

M5 is for moles M4 × 65

(c) (i) 150 / 65 = 2.31 moles NaN₃ or 2.31 moles nitrous acid

Conc = $2.31 \times \frac{1000}{500}$

M2 is for M1 × 1000 / 500

$$1$$

4.6(1) or 4.6(2) (mol dm⁻³)

Only this answer

(ii)
$$3HNO_2 \longrightarrow HNO_3 + 2NO + H_2O$$

Can allow multiples

(d) Ionic

If not ionic then
$$CE = 0/3$$

Oppositely charged ions / Na^+ and N_3^- ions Penalise incorrect ions here but can allow M3

1

1

1

1

1

1

1

Strong attraction between (oppositely charged) ions / lots of energy needed to

(e)	(i)	$N \equiv N \longrightarrow N^{-}$ Only	1
	(ii)	CO ₂ / N ₂ O / BeF ₂ / HN ₃ Allow other correct molecules	1
	(iii)	MgN ₆ Only	1 [21]

1

M3.(a)

Method 1		Method 2	Method 2		
Mass of H ₂ O = 4.38-2.46		Percentage of I	H₂O = 44%		
(= 1.92 g)					
	If there is an AE in M1 then can score M2 and M3 If M, incorrect can only score M1				
ZnSO₄	H ₂ O	ZnSO4	H2O	_	
<u>2.46</u>	<u>1.92</u>	56	<u>44</u>		
161.5	18	161.5	18		
				1	
(0.0152	0.107)	(0.347	2.444)		
(1	7)	(1:	7)		
x = 7		x = 7			
	If x = 7 with working then award 3 marks. Allow alternative methods. If M1 incorrect due to AE, M3 must be an integer.				
				1	

(b) Moles HCl = 0.12(0)

mol $ZnCl_2 = 0.06(0)$ OR 0.12 / 2

If M2 incorrect then CE and cannot score M2, M3 and M4.

mass
$$ZnCl_2 = 0.06 \times 136.4$$

Allow 65.4 + (2 × 35.5) for 136.4

= <u>8.18(4)</u> (g) **OR** <u>8.2</u> (g) Must be to 2 significant figures or more. Ignore units.

1

1

1

1

1

1

(c) Moles $ZnCl_2 = \frac{10.7}{136.4}$ (= 0.0784)

OR moles Zn = 0.0784

Mass Zn reacting = 0.0784 × 65.4 = (5.13 g) M2 is for their M1 × 65.4

% purity of $Zn = \frac{5.13}{5.68} \times 100$

M3 is M2 × 100 / 5.68 provided M2 is < 5.68

1

= <u>90.2</u>% **OR** <u>90.3</u>% Allow alternative methods. M1 = Moles ZnCl₂ = <u>10.7</u> (= 0.0784) 136.4

PhysicsAndMathsTutor.com

$$M2 = Theoretical moles Zn = 5.68 (= 0.0869)$$

65.4
$$M3 = M1 \times 100 / M2 = (0.0784 \times 100 / 0.0869)$$

$$M4 = 90.2\% \text{ OR } 90.3\%$$

(d) Ionic

If not ionic
$$CE = 0/3$$

Strong (electrostatic) attraction (between ions)

between oppositely charged ions / + and – ions / F^- and Zn^{2+} ions If IMF, molecules, metallic bonding implied CE = 0/3

[14]

1

1

1

1

1

1

M4. (a) Hydrogen/H bonds Not just hydrogen

> van der Waals/vdw/dipole-dipole/London/temporarily induced dipole/dispersion forces Not just dipole

(b)

M1 for partial charges as indicated in diagram (correct minimum) M2 for all four lone pairs M3 for H bond from the lp to the H (δ +) on the other molecule Lone pair on hydrogen CE = 0OHO CE = 0If only one molecule of water shown CE = 0

3

1

(c)	Hydrogen bonds/IMF (in water) stronger			
	OR			
	IMF/VDW/dipole-dipole forces (in H_2S) are weaker			
	OR			
	H bonding is the strongest IMF Ignore energy references Comparison must be stated or implied	1		
(d)	Atoms/molecules get larger/more shells/more electrons/more surface area <i>Not heavier/greater Mr</i>	1		
	therefore increased <u>Van der Waals/IMF</u> forces Ignore references to dipole-dipole forces	1		
(e)	Dative (covalent)/coordinate If not dative/coordinate CE = 0/2 If covalent or blank read on (Lone) pair/both electrons/two electrons on O(H ₂) donated (to H ⁺) OR pair/both electrons come from O(H ₂) Explanation of a coordinate bond specific to oxygen or water required Not just H+ attracted to lone pair since that is nearer to a H bond	1		

(f) ionic

if not ionic CE = 0

oppositely charged $\underline{ions}/+$ and $-\underline{ions or particles}$

ions attract <u>strongly</u> OR strong/many (ionic) bonds must be broken S⁻ loses M2 Reference to IMF loses M2 and M3

[13]

1

1